On Delaunay Oriented Matroids for Convex Distance Functions

نویسنده

  • Francisco Santos
چکیده

For any nite point set S in Ed, an oriented matroid DOM(S) can be de ned in terms of how S is partitioned by Euclidean hyperspheres. This oriented matroid is related to the Delaunay triangulation of S and is realizable, because of the lifting property of Delaunay triangulations. We prove that the same construction of a Delaunay oriented matroid can be performed with respect to any smooth, strictly convex distance function in the plane E2 (Theorem 3.5). For these distances, the existence of a Delaunay oriented matroid cannot follow from a lifting property, because Delaunay triangulations might be non-regular (Theorem 4.2(i). This is related to the fact that the Delaunay oriented matroid can be non-realizable (Theorem 4.2(ii) ).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Circuit Admissible Triangulations of Oriented Matroids Jörg Rambau

All triangulations of euclidean oriented matroids are of the same PLhomeomorphism type by a result of Anderson. That means all triangulations of euclidean acyclic oriented matroids are PL-homeomorphic to PL-balls and that all triangulations of totally cyclic oriented matroids are PL-homeomorphic to PLspheres. For non-euclidean oriented matroids this question is wide open. One key point in the p...

متن کامل

Circuit Admissible Triangulations of Oriented Matroids

All triangulations of euclidean oriented matroids are of the same PLhomeomorphism type by a result of Anderson. That means all triangulations of euclidean acyclic oriented matroids are PL-homeomorphic to PL-balls and that all triangulations of totally cyclic oriented matroids are PL-homeomorphic to PLspheres. For non-euclidean oriented matroids this question is wide open. One key point in the p...

متن کامل

Operations on M-Convex Functions on Jump Systems

A jump system is a set of integer points with an exchange property, which is a generalization of a matroid, a delta-matroid, and a base polyhedron of an integral polymatroid (or a submodular system). Recently, the concept of M-convex functions on constant-parity jump systems is introduced by Murota as a class of discrete convex functions that admit a local criterion for global minimality. M-con...

متن کامل

Higher-Order Triangular-Distance Delaunay Graphs: Graph-Theoretical Properties

We consider an extension of the triangular-distance Delaunay graphs (TD-Delaunay) on a set P of points in general position in the plane. In TD-Delaunay, the convex distance is defined by a fixed-oriented equilateral triangle 5, and there is an edge between two points in P if and only if there is an empty homothet of 5 having the two points on its boundary. We consider higher-order triangular-di...

متن کامل

COMs: Complexes of oriented matroids

In his seminal 1983 paper, Jim Lawrence introduced lopsided sets and featured them as asymmetric counterparts of oriented matroids, both sharing the key property of strong elimination. Moreover, symmetry of faces holds in both structures as well as in the so-called affine oriented matroids. These two fundamental properties (formulated for covectors) together lead to the natural notion of “condi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 16  شماره 

صفحات  -

تاریخ انتشار 1996